www.bripharmacol.org ### **REVIEW** ## The peripheral cannabinoid receptor knockout mice: an update **NE Buckley** Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA This review gives an overview of the CB₂ receptor (CB₂R) knockout (CB₂R^{-/-}) mice phenotype and the work that has been carried out using this mutant mouse. Using the $CB_2R^{-/-}$ mice, investigators have discovered the involvement of CB_2R on immune cell function and development, infection, embryonic development, bone loss, liver disorders, pain, autoimmune inflammation, allergic dermatitis, atherosclerosis, apoptosis and chemotaxis. Using the CB₂R^{-/-} mice, investigators have also found that this receptor is not involved in cannabinoid-induced hypotension. In addition, the $CB_2R^{-/-}$ mice have been used to determine specific tissue CB₂R expression. The specificity of synthetic cannabinoid agonists, antagonists and anti-CB₂R antibodies has been screened using tissues from $CB_2R^{-/-}$ mice. Thus, the use of this mouse model has greatly helped reveal the diverse events involving the CB₂R, and has aided in drug and antibody screening. British Journal of Pharmacology (2008) 153, 309-318; doi:10.1038/sj.bjp.0707527; published online 29 October 2007 Keywords: CB_2R ; $CB_2R^{-/-}$ mice; antifibrogenic; pain; allergic dermatitis; atherosclerosis; chemotaxis; osteoporosis; multiple sclerosis Abbreviations: 2-AG, 2-arachidonoylglycerol, endogenous cannabinoid; AM1241, synthetic cannabinoid, CB₂R selective agonist; SR141716, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3carboxamide hydrochloride, synthetic cannabinoid, CB₁R selective antagonist; SR144528, N-[(1S)-endo-1,3,3-trimethyl bicycle [2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide, synthetic cannabinoid, CB₂R selective antagonist; THC, Δ -9-Tetrahydrocannabinol; WIN 55,212-2, (R)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthalenyl)methanone, synthetic cannabinoid agonist #### Introduction The peripheral cannabinoid receptor (CB₂R) was the second cannabinoid receptor discovered (Munro et al., 1993), after the central cannabinoid receptor (CB₁R) (Matsuda et al., 1990). Both cannabinoid receptors are G-protein-coupled seven transmembrane (TM) receptors. Human CB₁R and CB₂R share 44% overall homology and 68% at the TM level (Munro et al., 1993). Human CB₁R and mouse CB₁R share 96% homology (Chakrabarti et al., 1995), while human CB₂R and mouse CB₂R share 82% homology (Shire et al., 1996b). Mouse CB₁R and CB₂R share 66% overall homology and 78% at the TM level (Shire et al., 1996a). CB₁R is expressed at high levels in brain tissue and to a lesser extent in peripheral tissues such as the adrenal glands, reproductive organs and on immune cells (Matsuda et al., 1990; Bouaboula et al., 1993; Galiegue et al., 1995). In contrast, CB₂R is mainly expressed in cells of haematopoietic origin. CB₂R expression has been demonstrated in spleen and thymus (Schatz et al., 1997), lymph nodes, Peyer's patches (Lynn and Herkenham, 1994) and immune system-derived cell lines. Human blood cell populations were reported to have different degrees of CB₂R expression with the following rank order: B cells>natural killer cells>monocytes>polymorphonuclear neutrophil cells > CD8 + T cells > CD4 + T cells (Galiegue et al., 1995; Carayon et al., 1998). The expression level of CB₂R in lymphocytes and macrophages has been shown to vary in relation to cell differentiation and activation state (reviewed in Klein et al., 2003). Thus, Carayon et al. (1998) reported that CB₂R expression varied depending on the stage of B-cell differentiation with virgin and memory B cells, expressing the highest levels of CB₂R mRNA followed by germinalcentre B cells and centroblasts (Carayon et al., 1998). Carlisle et al. (2002) showed that while resident macrophages lack CB₂R expression, thioglycollate-elicited and interferon-γ (IFN-γ)-primed macrophages have high-CB₂R levels (Carlisle et al., 2002). The expression of CB₂R gene in immune tissues has been reported to be 10–100 times that of CB₁R (Galiegue et al., 1995). More recently, CB₂R expression in osteoblasts, Correspondence: Dr NE Buckley, Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, E-mail: nebuckley@csupomona.edu Received 2 July 2007; revised 30 August 2007; accepted 31 August 2007; published online 29 October 2007 osteocytes and osteoclasts was observed (Ofeck et al., 2006). CB₂R expression has also been found in preimplantation embryos (Paria et al., 1995), and more recently in the normal central nervous system (CNS) (Ross et al., 2001; Van Sickle et al., 2005; Ashton et al., 2006; Gong et al., 2006; Onaivi, 2006; Onaivi et al., 2006). The existence of a putative third cannabinoid receptor, GPR55, has been reported. GPR55 is an orphan G-protein-coupled receptor that has low-sequence homology (10-15%), compared to that of CB₁R or CB₂R, and is expressed in the testis at approximately a 15-fold higher level than in the brain (Baker et al., 2006). However, full characterization of this receptor is lacking, and it cannot be concluded that it is a true cannabinoid receptor (Petitet et al., 2006). Recently, Sugiura et al. (2007) were unable to stimulate GPR55 activation using three different cannabinoids (Sugiura et al., 2007). To investigate the role of CB₁R and CB₂R, mutant mice with deletions in these receptors have been developed. Thus far, there are three lines of CB₁R knockout (CB₁R^{-/-}) mice (reviewed in Valverde *et al.*, 2005), and two CB₂R knockout (CB₂R^{-/-}) mice, one developed by Buckley et al. (2000) and the one recently developed by Deltagen (San Mateo, CA, USA) and commercially available through Jackson Laboratory (Bar Harbor, ME, USA) (http:// jaxmice.jax.org/strain/005786.html#genes). The goal of the present review is to provide an update on the multiple findings investigators have achieved with the use of the $CB_2R^{-/-}$ mice generated by Buckley *et al.* (2000). #### $CB_2R^{-/-}$ mice The CB₂R^{-/-} mice were generated by homologous recombination. Upon homologous recombination, the last 341 bp of the CB₂R-coding exon in the gene was replaced by the neomycin gene, effectively removing bp 1186 onwards from the coding sequence (see accession U21681 in GenBank). The CB₂R deletion results in a gene lacking the coding region for part of the intracellular loop 3, TM regions 6 and 7 and the C terminus (Buckley et al., 2000). This deletion renders the CB₂R nonfunctional as macrophages derived from CB₂R^{-/-} mice are unable to respond to THC (Buckley et al., 2000; Chuchawankul et al., 2004). However, these mice are responsive to the psychotropic effects of cannabinoids (Buckley et al., 2000). The $CB_2R^{-/-}$ mice display no gross morphological differences from their wild-type counterparts, but at the cellular level, the CB₂R^{-/-} mice are deficient splenic marginal zone B cells, peritoneal B1a (CD5+CD11b+CD23loB220lo) cells, splenic memory CD4+ T cells, and intestinal natural killer cells and natural killer T cells (Ziring et al., 2006). Furthermore, $CB_2R^{-/-}$ mice have a decreased number of diaphyseal osteoblast precursors, but have an increased osteoclast number and increased activity of their trabecular osteoblasts. This phenotype causes $CB_2R^{-/-}$ mice to undergo a greater age-related bone loss than their wild-type counterparts, a loss of bone mass that is apparent by 8 weeks of age (Ofeck et al., 2006). #### CB₂R^{-/-} mice and reproduction The $CB_2R^{-/-}$ mice are fertile, care for their young and have litter sizes comparable to their wild-type counterparts (Buckley et al., 2000). CB₂R is present in the preimplantation embryo, but not in the oviduct or uterus (Das et al., 1995; Paria et al., 1995, 2001; Wang et al., 2004). CB₂R is expressed from the one-cell through the blastocyts embryonic stage, restricted to blastocyts inner cell mass, but not in the trophectoderm-derived trophoblast stem cells, which are directly involved in implantation (Paria et al., 1995). On the other hand, CB₁R expression is present in the trophectoderm of the preimplantation embryo (Paria et al., 1995; Yang et al., 1996). Congruent with this, was the finding that $CB_1R^{-/-}$ and $CB_1R^{-/-}/CB_2R^{-/-}$, but not $CB_2R^{-/-}$ embryos, were trapped in the oviduct (Wang et al., 2006). Furthermore, it has been shown that the number of uterine implantation sites and oviductal embryo transport in CB₂R^{-/-} pregnant female mice was comparable to that of wild-type pregnant female mice (Wang et al., 2006). Interestingly, embryonic development in $CB_2R^{-/-}$ mice is retarded (Paria *et al.*, 2001). It was found that on day 3 of pregnancy, only 41.5% of $CB_2R^{-/-}$ embryos were at the eight-cell stage as compared to the 84% wild-type embryos. There were 24% $CB_1R^{-/-}$ embryos at the eight-cell stage. On day 4 of pregnancy, 71.3% $CB_2R^{-/-}$ embryos were blastocysts and 25.7% morulas compared to the 97.5% wild-type blastocysts and 2.5% morulas. There were 61.5% CB₁R^{-/-} embryos at the blastocyst stage and 37% at the morula stage (Paria et al., 2001). However, $CB_2R^{-/-}$ mice breeding pairs have normal litter sizes (Buckley et al., 2000), suggesting that the asynchronous CB₂R^{-/-} embryonic development at days 3 and 4 of pregnancy does not hinder embryonic implantation at day 4 or 5. Taken together, these findings indicate that CB₁R, and not CB₂R, is mostly responsible for successful embryonic implantation, and that both receptors have a role in synchronizing embryonic development. The function of CB₂R in the embryonic stem cells is unknown, but may implicate this receptor in specifying pluripotent inner cell mass cell lineage during blastocyst formation (Paria et al., 2001; Wang et al., 2006). #### $CB_2R^{-/-}$ mice and
disease models $CB_2R^{-/-}$ mice and bone loss Cannabinoid receptors have been implicated in bone mass, bone loss and osteoclast activity (Idris et al., 2005; Ofeck et al., 2006). Unregulated osteoclast (bone-resorbing cells) or osteoblast (bone-forming cells) activity can cause bone loss, resulting in diseases such as osteoporosis (Helfrich, 2003). The involvement of CB₁R on bone mass has been reported previously (Idris et al., 2005). CB2R is expressed in osteoblasts, osteocytes and osteoclasts (Ofeck et al., 2006). Osteoclasts are derived from cells in the myeloid lineage (Boyle et al., 2003; Xing et al., 2005). Osteoblasts, the precursors of osteocytes, are derived from precursor cells in the stromal element of bone marrow (Rickard et al., 1996). CB₂R^{-/-} mice showed accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remained the same. CB₂R^{-/-} osteoclast number and trabecular osteoblast activity were increased. However, there was a significant decrease in the number of diaphyseal osteoblast precursors. In wild-type mice, the CB₂R-specific agonist HU-308 enhanced endocortical osteoblast number and activity and restrained trabecular osteoclastogenesis, apparently by inhibiting proliferation of osteoclast precursors. These findings suggest that CB_2R has a role in bone homeostasis and that this receptor is a potential drug target for the treatment of osteoporosis (Ofeck *et al.*, 2006). #### $CB_2R^{-/-}$ mice and liver disorders The CB₂R has been implicated to have an antifibrogenic role in the liver (Julien et al., 2005). Liver fibrosis occurs due to chronic liver injury that can eventually lead to cirrhosis and its complications. Julien et al. (2005) found that while normal liver does not express CB2R, human cirrhotic liver does. In this study, it was found that CB₂R activation had potent antifibrogenic effects, including hepatic myofibroblast growth inhibition and increased apoptosis. Furthermore, when liver fibrosis was induced in wild-type and $CB_2R^{-/-}$ mice using carbon tetrachloride (CCl₄), they found that CB₂R^{-/-} mice developed enhanced liver fibrosis compared to their wild-type counterparts. That is, they observed a higher collagen deposition as determined by histological examination and hydroxyproline measurement. In addition, smooth muscle α-actin mRNA (α-SMA) was higher for CCl₄treated $CB_2R^{-/-}$ mice compared to CCl_4 -treated wild-type or vehicle-treated $CB_2R^{-/-}$ mice (Julien et al., 2005). Hepatocyte proliferation was also impaired in $CB_2R^{-/-}$ mice compared to wild-type mice (Deveaux et al., 2007). These findings provide evidence for a protective role of CB₂R in liver injury. The CB₂R also seems to play a protective role in liver ischaemia/reperfusion (I/R) injury (Batkai et al., 2007). The I/R model of organ ischaemia followed by reperfusion mimics events that may develop in common disease such as myocardial infarction and stroke, coronary bypass surgery and organ transplantation. In the I/R model, liver ischaemia was induced for 60 min by clamping the hepatic artery and portal vein. Reperfusion was then allowed for 90 min or 24 h (Batkai et al., 2007). Liver damage to I/R was greater in $CB_2R^{-/-}$ mice compared to wild-type mice as determined by increased serum transaminase AST/ALT and myeloperoxidase activities, malondialdehyde formation as an indicator or lipid peroxidation, and an increase in proinflammatory cytokines and chemokines. Histological examination also revealed much more extensive liver injury and neutrophil infiltration in the liver from CB₂R^{-/-} mice than that from wild-type mice. Interestingly, the hepatic levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) were also substantially elevated upon I/R (Batkai et al., 2007). Taken together, the findings on the involvement of CB_2R in the liver fibrosis model and in the I/R model implicate the CB_2R in the liver repair mechanism. #### $CB_2R^{-/-}$ mice and pain It is widely recognized that cannabinoids reduce pain in humans and animals. This effect by cannabinoids is thought to be largely mediated by the CB_1R . More recently, however, the implication of CB_2R in pain modulation is being recognized. CB_2R has been shown to modulate acute pain, chronic inflammatory pain, post-surgical pain, cancer pain and pain associated with nerve injury (reviewed in Whiteside et al., 2007). The CB₂R agonist, AM1241, has been shown to exert its antinociceptive effects locally without producing CNS effects (Malan et al., 2001). Furthermore, using three different assays of nociception, it was demonstrated that CB₂R^{-/-} mice have a lower threshold of pain compared to wild-type mice in the presence of cannabinoids. This was determined using the hot-plate, paw-withdrawal and tailflick assays. While the hot-plate assay requires supraspinal responses, the paw-withdrawal and tail-flick assays require spinal reflexes. Thus, pain induced by these methods can be inhibited by drugs acting at these peripheral sites. In the absence of cannabinoids, using the Hargreaves' method (Hargreaves et al., 1988), the paw-withdrawal assay showed reduced latency in $CB_2R^{-/-}$ mice compared their wild-type counterparts. Taken together, these findings provide evidence that CB₂R is involved in acute nociception, and thus, is a likely target to treat acute pain (Ibrahim et al., 2006). ### $CB_2R^{-/-}$ mice and experimental autoimmune encephalomyelitis, a multiple sclerosis model Cannabinoids have been shown to alleviate spasticity associated with experimental autoimmune encephalomyelitis (EAE) in rodents (Baker et al., 2000; Pryce and Baker, 2007). To determine whether CB₂R is involved in the regulation of autoimmunity, EAE was induced in wild-type and CB₂R^{-/-} mice on a B10.PL background (Maresz et al., 2007). It was found that CB₂R^{-/-} mice exhibited a higher incidence of disease, a significantly increased clinical score and a reduced recovery rate than their wild-type counterparts. Furthermore, when EAE was induced in wild-type mice with $CB_2R^{-/-}$ encephalitogenic T cells by adoptive transfer, there was a more severe clinical disease. The disease was characterized by a higher mortality rate and the presence of increased numbers of infiltrating mononuclear cells. Examination of the lesions revealed that there was an increase in the number of $CB_2R^{-/-}$ T cells in and around the lesions when EAE was induced with CB₂R^{-/-} T cells as compared to that induced with wild-type T cells. This increase in T-cell number in the CNS was due to more proliferation and decreased apoptosis of the $CB_2R^{-/-}$ T cells. Furthermore, the CNS CB₂R^{-/-} encephalitogenic T cells secreted more proinflammatory cytokines than the wild-type encephalitogenic T cells. This explains the more severe disease in mice receiving the $CB_2R^{-/-}$ T cells (Maresz et al., 2007). It is known that endocannabinoids are synthesized in the CNS (Salzet et al., 2000) and that endocannabinoids have immune suppressive effects such as induction of apoptosis and inhibition of lymphocyte proliferation (Salzet et al., 2000; Klein et al., 2003), thus these findings provide evidence that the CNS actively suppresses T-cell function through the CB₂R (Maresz et al., 2007). #### $CB_2R^{-/-}$ mice and allergic dermatitis A model of cutaneous contact dermatitis was used to study the allergic response in mutant mice. It was found that, compared to wild-type mice, $CB_1R^{-/-}$, $CB_2R^{-/-}$ and $CB_1R^{-/-}/CB_2R^{-/-}$ mice exhibit enhanced allergic responses to 2,4-dinitrofluorobenzene (DNFB) (Karsak et al., 2007). In this model, mice were sensitized with DNFB on the shaved abdomen. On days 5, 13 and 21, the mice were challenged with DNFB on the right ear. Swelling was then measured on the right ear and compared to the left ear within the same animal. While swelling was increased in the right ear of wildtype mice, swelling was significantly higher in $CB_1R^{-/-}$, $CB_2R^{-/-}$ and $CB_1R^{-/-}/CB_2R^{-/-}$ ears. Furthermore, upon injection of the CB₁R and CB₂R antagonists, SR141716A and SR144528, respectively, the swelling was enhanced in wild-type animals. Swelling, however, was decreased by THC, but enhanced by HU-308. Moreover, the levels of the endogenous cannabinoids 2-AG and anandamide were elevated in $CB_1R^{-/-}/CB_2R^{-/-}$ mice (Karsak et al., 2007). Interestingly, using a slightly different approach to induce a cutaneous reaction, another group reported a decrease, not an increase in the ear swelling of CB₂R^{-/-} mice. These investigators passively sensitized the mice by i.v. injection of 1 μg of monoclonal anti-dinitrophenol IgE followed by a topical challenge with DNFB (Ueda et al., 2007). Furthermore, this group reported that oral administration of SR144528 suppressed ear swelling (Ueda et al., 2005, 2007). Although both groups find that the CB₂R is involved in the cutaneous allergic response, their findings, using the $CB_2R^{-/-}$ mice as well as the CB_2R antagonist, are opposite. While Karsak et al. (2007) implicate the endocannabinoid system in the attenuation of the inflammatory response, Ueda et al. (2005, 2007) propose that CB₂R participate in the induction of the cutaneous reaction. The discrepancy in their findings, and hence conclusions, may be due to the different approaches used to induce the allergic response in wild-type and $CB_2R^{-/-}$ mice, and in delivering the SR144528 compound. $CB_1R^{-/-}/CB_2R^{-/-}$ and $CB_2R^{-/-}$ mice in hypotension Prolonged and profound hypotension is associated with diverse forms of shock, such as haemorrhagic (Wagner et al., 1997), endotoxaemic (Varga et al., 1998) and cardiogenic (Wagner et al., 2001) shock and the hypotension occurring in advanced liver cirrhosis (Batkai et al., 2001). THC, anandamide and 2-AG are known to cause long-lasting hypotension and bradycardia in most animal models (Benowitz and Jones, 1975;
Varga et al., 1995; Jarai et al., 2000; Cohen et al., 2002). The cannabinoids anandamide and abnormal cannabidiol are known to induce vasodilation of mesenteric arteries in wild-type and CB₁R^{-/-}/CB₂R^{-/-} mice. This vasodilation is inhibited by SR141716A, but not by other CB₁R antagonists (Jarai et al., 1999). A newly discovered endocannabinoid-like molecule, N-arachidonoyl-L-serine (ARA-S) has also been shown to produce endotheliumdependent vasodilation that is not reversed by SR141716 nor by SR144528. ARA-S binds very weakly to CB₁R and does not bind to CB₂R. ARA-S decreases LPS-induced plasma TNF- α levels in wild-type, $CB_1R^{-/-}/CB_2R^{-/-}$ and $CB_2R^{-/-}$ mice (Milman et al., 2006). This LPS-induced hypotension and cardiac contractility were prevented by SR141716. However, LPS-induced hypotension and its inhibition by SR141726 were similar in wild-type, $CB_1R^{-/-}$ and $CB_1R^{-/-}/CB_2R^{-/-}$ mice (Batkai *et al.*, 2004). These findings prove that these cannabinoids cause hypotension via a non- CB_1R/CB_2R mechanism. #### $CB_2R^{-/-}$ mice and atherosclerosis Atherosclerosis is a chronic inflammatory disease of the large arteries, and is the primary cause of heart disease and stroke in Western countries (Libby, 2002). It has been found that oral administration of THC significantly reduced the progression of atherosclerosis in the apolipoprotein mouse model (Apo $E^{-/-}$), an animal model for atherosclerosis. The CB₂R antagonist SR144528 reversed the effect of THC, suggesting the involvement of the CB₂R. Splenocytes derived from ApoE^{-/-} mice treated with THC showed reduced concanavalin A (Con A)-induced proliferation and IFN-y secretion. THC was also found to decrease ApoE^{-/-} and wild-type thioglycollate-induced macrophage migration in response to the monocyte chemoattractant protein-1, but not the migration of CB₂R^{-/-} macrophages (Steffens et al., 2005). Apoptosis of macrophages is an important event in the pathophysiology of atherosclerosis (Liu et al., 2005). Oxidized low-density lipoproteins (OxLDL) are a major lipid component of atherosclerotic lesions and endocytosis of OxLDL is a potent inducer of apoptosis in cultured macrophages (Reid et al., 1993; Hardwick et al., 1996). Several macrophage processes associated with ongoing atherogenesis are regulated by CB2R (Zhu et al., 1998; Maccarrone and Finazzi-Agro, 2003; Steffens et al., 2005). It has been found that wild-type peritoneal macrophages treated with OxLDL and its cholesterol derivative 7-ketocholesterol readily undergo apoptosis. OxLDL- and 7-ketocholesterolinduced apoptosis in CB₂R^{-/-} peritoneal macrophages was significantly decreased compared to wild-type macrophages. Staurosporine-induced apoptosis was similar in wild-type and CB₂R^{-/-} peritoneal macrophages, indicating that apoptotic mechanism are intact in the CB₂R^{-/-} macrophages. These findings suggest that CB₂R influences the development and progression of atherosclerotic lesions by mediating the apoptotic response of macrophages to OxLDL (Thewke et al., 2007). Taken together, these observations suggest that drugs targeting the CB₂R may be valuable tools to treat atherosclerosis. #### CB₂R and macrophage chemotaxis A crucial event occurring early in an inflammatory response is the migration of macrophages towards the chemostimulant. It has been found that peritoneal macrophage response to the chemokine RANTES/CCL5 is significantly inhibited by THC, CP55,940 and by the CB₂R-specific agonist O-2137, but not by the CB₁R agonist, ACEA. Moreover, the inhibition by THC was reversed by SR144528 but not by SR141716. THC treatment had a minimal effect on the chemotactic response of CB₂R^{-/-} peritoneal macrophages (Raborn *et al.*, 2007). These findings implicate the CB₂R in the modulation of macrophage migration in response to chemoattractants. #### CB₂R^{-/-} mice and infectious models $CB_2R^{-/-}$ mice and bacterial infections Δ-9-Tetrahydrocannabinol treatment of mice has been shown to suppress the immune response to Legionella pneumophila, an intracellular bacterium that causes Legionnaires' disease. In this model, THC suppresses Th1 immunity while enhancing Th2 response (Newton et al., 1994; Klein et al., 2000). The Th2-biasing effect of THC involves cannabinoid receptors, suppression of IL-12 and IL-12 receptor and IFN-γ along with an increase in the Th2-biasing transcription factor GATA 3 (Klein et al., 2004). Dendritic cells are potent antigen-presenting cells that upon maturation produce co-stimulatory molecules and cytokines such as IL-12 that bias helper T cells towards Th1 immunity (Kapsenberg, 2003). Since THC treatment significantly suppressed IL-12 serum levels in infected mice, dendritic cells were isolated from wild-type, CB₁R^{-/-} and CB₂R^{-/-} mouse bone marrow, they were infected in vitro with L. pneumophila and treated with THC. THC was able to suppress IL12p40 production in dendritic cells derived from all three mice genotypes. When SR141716 was used on $CB_2R^{-/-}$ dendritic cells and SR144528 on $CB_1R^{-/-}$ dendritic cells, the antagonists only partially attenuated the THCinduced suppression of IL-12 production by the cells. These findings suggest partial participation of CB1R and CB2R in the dendritic response to THC in this infectious model (Lu et al., 2006). #### $CB_2R^{-/-}$ mice and parasitic infections Infection of wild-type mice with the *Plasmodium berghei* is a model for cerebral malaria. This infection leads to 100% mortality after 6–7 days of infection. It was found that $CB_2R^{-/-}$ mice are resistant to cerebral disease after being infected with this parasite. Infection leads to comparable microglial migration in the CNS of wild-type and $CB_2R^{-/-}$ mice. However, there is an increase in the number of $CD11b^+$ cells in spleens of infected $CB_2R^{-/-}$ mice compared to infected wild-type mice. The reason for the resistance of $CB_2R^{-/-}$ mice to cerebral malaria is still unknown (Alferink *et al.*, 2007). # $CB_2R^{-/-}$ mice, lymphocyte proliferation and cytokine production It is known that cannabinoids and cannabinoid receptors modulate lymphocyte proliferation and cytokine production (reviewed by Klein *et al.*, 2003; Massi *et al.*, 2006). To investigate whether the endogenous cannabinoid 2-AG modulates cytokine production via CB₁R and CB₂R, Ouyang, Kaplan and colleagues used the CB₁R^{-/-}/CB₂R^{-/-} double knockout mice. They found that 2-AG suppressed interleukin-2 (IL-2) and IFN- γ production in phorbol myristate 13-acetate/ionomycin (PMA/Io)-treated wild-type mouse splenocytes (Ouyang *et al.*, 1998; Kaplan *et al.*, 2005). In addition, 2-AG suppressed IFN- γ production in splenocytes derived from CB₁R^{-/-}/CB₂R^{-/-} mice (Kaplan *et al.*, 2005). 2-AG ether, a nonhydrolysable analogue of 2-AG, also suppressed IL-2 expression in wild-type and $CB_1R^{-/-}/CB_2R^{-/-}$ splenocytes (Rockwell et al., 2006). Our findings are consistent with these. We isolated splenocytes and CD4⁺ T cells from wild-type and CB₂R^{-/-} mice, and treated them in vitro with the T-cell mitogen Con A or with anti-CD3 and anti-CD28 antibodies. The cells were cultured in the presence or absence of 2-AG or WIN 55,212-2. We found that 2-AG and WIN 55,212-2 inhibited the secretion of IL-2 and IFN- γ in wild-type and CB₂R^{-/-} splenocytes stimulated with Con A (Figures 1 and 2). Furthermore, WIN 55,212-2 inhibited the secretion of IL-2 and IFN-γ in wild-type and CB₂R^{-/-} and CD4⁺ T cells stimulated with anti-CD3 and anti-CD28 (Table 1). However, WIN 55,212-2 did not alter the secretion of TGF- β in wild-type or CB₂R^{-/-} splenocytes and CD4⁺ T cells (data not shown). In addition, 2-AG and WIN 55,212-2 did not alter proliferation in wild-type or CB₂R^{-/-} splenocytes stimulated with Con A. However, WIN 55,212-2 inhibited proliferation in wild-type and $CB_2R^{-/-}$ CD4⁺ T cells stimulated with anti-CD3 and anti-CD28 antibodies. This suggests that the effect of WIN 55,212-2 on cell proliferation may be responsible for decrease in cytokine production seen with this cannabinoid (Buranapramest, 2006). Taken together, these findings suggest that CB₁R and CB₂R are not involved in the inhibition of splenocyte proliferation and IL-2 and IFN-γ secretion by 2-AG and WIN 55,212-2, respectively. $CB_2R^{-/-}$ mouse cells and intracellular Ca^{2+} levels The $CB_1R^{-/-}/CB_2R^{-/-}$ double knockout mice have also been used to show that the effects of cannabinoids on intracellular calcium increase is not dependent on CB_1R and CB_2R . Rao and Kaminski (2006) found that THC (12.5 μ M), cannabinol (20 μ M) and HU-210 (20 μ M) induced a rise in intracellular calcium in wild-type and $CB_1R^{-/-}/CB_2R^{-/-}$ splenocytes. Interestingly, SR141716A and SR144528 (1 μ M) attenuated the rise in calcium elicited by the cannabinoids. The partial attenuation of the cannabinoid-induced calcium increase in wild-type and $CB_1R^{-/-}/CB_2R^{-/-}$ splenocytes, suggest that the antagonists used may be acting via mechanism distinct from those involving CB_1R and CB_2R . #### CB₂R^{-/-} mice and drug specificity Recently, the CB₂R^{-/-} mouse has been used to test drug specificity. The specificity of GW405833 for CB₂R has been tested using this mutant mouse. Inflammatory hyperalgesia was induced in wild-type or CB₂R^{-/-} mice by an intraplanar injection of Freund's complete adjuvant and 24h later GW405833 was given intraperitoneally. Tactile allodynia was developed by wild-type and $CB_2R^{-/-}$ mice in response to the Freund's complete adjuvant injection. While GW405833 was able to reverse this effect in wild-type mice, it did not produce a reduction in tactile allodynia in the $CB_2R^{-/-}$ mice (Valenzano et al., 2005; Whiteside et al., 2005). Furthermore, it was shown that the central effects of high dose of GW405833 were not mediated by CB₂R as determined by carrying out the hot-plate,
tail-flick and rotarod tests in $CB_2R^{-/-}$ mice and finding similar responses to those found in wild-type mice (Whiteside et al., 2005). These findings Figure 1 Cannabinoids inhibited the secretion of interleukin-2 (IL-2) in $CB_2R^{+/+}$ and $CB_2R^{-/-}$ splenocytes stimulated with concanavalin A (Con A). $CB_2R^{+/+}$ or $CB_2R^{-/-}$ splenocytes (1 × 10⁶ cells per ml per well) were stimulated with Con A (2.5 μ g ml⁻¹) and treated with the indicated concentrations of 2-arachidonoylglycerol (2-AG) (a) or WIN 55,212-2 (b). IL-2 secretion levels were determined from 72-h cell culture supernatants by ELISA. Data are expressed as the mean of triplicate samples \pm s.d. and are representative of three independent experiments. *Significantly different from untreated control, P<0.05. show that GW405833 is an effective drug that, at low doses, targets the CB_2R . The specificity of AM1241 and HU-308 in in vivo LPSinduced TNF-α and IL-10 production has also been tested using the $CB_2R^{-/-}$ mouse. AM 1241 (50 $mg\,kg^{-1}\text{, i.p.})$ and HU-308 (30 mg kg⁻¹, i.p.) inhibited LPS-induced TNF- α production. To test if this effect was mediated by the CB₂R, AM1241 and HU-308 were given to wild-type and CB₂R^{-/-} mice. An hour later, mice were given LPS $(0.15 \text{ mg kg}^{-1}, \text{ i.p.})$. It was found that plasma TNF- α was significantly inhibited and IL-10 significantly elevated in wild-type and CB₂R^{-/-} mice in response to these agonists. These findings indicate that in vivo administration of AM1241 and HU-308 alter LPS-induced TNF- α and IL-10 production independent of the presence of CB₂R (Huang et al., 2007). However, another study revealed that some LPS-induced physiological events are mediated by the CB₂R. Recently, Duncan et al. (2007) have found that while wild-type animals are able to mount a febrile response to an *in vivo* LPS (100 µg kg⁻¹, i.p.) challenge, $CB_2R^{-/-}$ mice do not (Duncan *et al.*, 2007). Thus, it can be concluded that the $CB_2R^{-/-}$ mouse model is a very useful tool in drug discovery. #### CB₂R^{-/-} mice and antibody specificity Tissues from the $CB_2R^{-/-}$ mice have been used to test the specificity of antibodies raised against the CB_2R . The expression of CB_2R protein in wild-type and $CB_2R^{-/-}$ mice has been studied by immunohistochemistry in diverse tissues. Although several laboratories failed to detect CB₂R in the brain (Derocq et al., 1995; Galiegue et al., 1995; Schatz et al., 1997; Carlisle et al., 2002; Ibrahim et al., 2003, 2006), recent studies have revealed the presence of this receptor in diverse brain regions. Using polyclonal antibodies generated against the C terminus of CB₂R from Alpha Diagnostics (San Antonio, TX, USA), Van Sickle et al. (2005) reported the expression of CB₂R protein in neurons of the brainstem from wild-type animals. To test the specificity of their antibody, they carried out immunostaining on the dorsal motor nucleus of the vagus from wild-type and $CB_2R^{-/-}$ mice. While they found CB₂R expression in the wild-type mice, there was no immunostaining in $CB_2R^{-/-}$ mice (Van Sickle et al., 2005). Using rabbit anti-human CB₂R polyclonal antibody (Cayman Chemicals, Ann Arbor, MI, USA and Sigma, St Louis, MO, USA), Onaivi, Gong and colleagues have found CB₂R widely expressed in the brain. Unfortunately, the specificity of the Cayman anti-CB₂R antibody was not tested using the $CB_2R^{-/-}$ brain. Instead, using a different antibody, one raised against the C terminus of CB₂R (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), they showed that while CB₂R expression was found in the interpolar part of spinal 5th nucleus of the wild-type mouse brain, CB₂R expression was not found in the same brain region of $CB_2R^{-/-}$ Figure 2 Cannabinoid inhibited the secretion of interferon- γ (IFN- γ) in CB₂R^{+/+} and CB₂R^{-/-} splenocytes stimulated with concanavalin A (Con A). CB₂R^{+/+} or CB₂R^{-/-} splenocytes (1 × 10⁶ cells per ml per well) were stimulated with Con A (2.5 μ g ml⁻¹) and treated with the indicated concentrations of 2-arachidonoylglycerol (2-AG) (a) or WIN 55,212-2 (b). IFN- γ secretion levels were determined from 72-h cell culture supernatants by ELISA. Data are expressed as the mean of triplicate samples \pm s.d. and are representative of three independent experiments. *Significantly different from untreated control, P<0.05. Table 1 IL-2 and IFN-γ secretion in anti-CD3 and anti-CD28 stimulated CD4⁺ cells treated with WIN 55,212-2 | WIN 55,212-2
(пм) | $CB_2R^{+/+}$ cells, IL-2 (pg ml ⁻¹ ± s.d.) | $CB_2R^{-/-}$ cells, IL-2 (pg ml ⁻¹ ± s.d.) | $CB_2R^{+/+}$ cells, IFN- γ (pg ml ⁻¹ \pm s.d.) | $CB_2R^{-/-}$ cells, IFN- γ
(pg ml ⁻¹ ± s.d.) | |----------------------|--|--|---|--| | 0 | 49.17 ± 9.42 | 158.20 ± 52.84 | 134.50 ± 17.05 | 139.00 ± 27.02 | | 3 | 47.64 ± 5.20 | 115.60 ± 90.35 | 133.50 ± 32.23 | 124.40 ± 42.46 | | 10 | 22.37 ± 15.19 | 77.04 ± 21.67 | 87.54 ± 6.35* | 80.20 ± 2.86 * | | 31 | 14.22 ± 2.42* | 30.72 ± 9.90* | 110.40 ± 23.10 | 101.50 ± 13.88 | | 100 | 38.98 ± 27.10 | 64.98 ± 11.11 | 122.20 ± 5.86 | 123.80 ± 24.58 | | 316 | 48.92 ± 45.70 | 72.78 ± 53.71 | 93.67 ± 18.04 | 96.37 ± 13.11 | | 1000 | 7.65 ± 1.87* | $45.38 \pm 0.60*$ | 96.85 ± 12.90 | 88.89 ± 15.90 | | 3162 | 13.10 ± 8.50* | 18.75 ± 5.36* | 91.21 ± 5.21* | 82.98 ± 10.50* | Abbreviations: IFN- γ , interferon- γ ; IL-2, interleukin-2. Purified total T cells or CD4 $^+$ T cells were isolated by negative selection using the Pan T Cell Isolation Kit or CD4 $^+$ T cell Isolation Kit, respectively (Miltenyi Biotech, Auburn, CA, USA) from spleens. CB₂R $^{+/+}$ or CB₂R $^{-/-}$ CD4 $^+$ T cells (1 × 10 5 cells per 0.1 ml per well) were stimulated with anti-CD3 (5 μ g ml $^{-1}$) and anti-CD28 (0.5 μ g ml $^{-1}$) antibodies and treated with the indicated concentrations of WIN 55,212-2. IL-2 and IFN- γ secretion levels were determined from 72-h cell culture supernatants by ELISA. Data are expressed as the mean of triplicate samples \pm s.d. and are representative of three independent experiments. *Significantly different from untreated control, P<0.05. mice (Gong *et al.*, 2006; Onaivi, 2006; Onaivi *et al.*, 2006). Coincident with these data is the observation that CB_2R is present in neural progenitors from late embryonic stages to adult brain. Moreover, activation of the CB_2R *in vitro* promoted neural progenitor cell proliferation, this was not seen in $CB_2R^{-/-}$ cells. In addition, *in vivo* treatment with HU-308 increased hippocampal progenitor proliferation in wild-type but not in $CB_2R^{-/-}$ mice (Palazuelos *et al.*, 2006). On the other hand, Wotherspoon *et al.* (2005) have not been able to find CB_2R expression in sections of naive mouse dorsal root ganglia or spinal cord using the anti- CB_2R antibody from Cayman. Although CB_2R immunoreactivity was seen following unilateral nerve damage, and was localized to the superficial laminae of the dorsal horn of the spinal cord, ipsilateral to the nerve damage. Antibody specificity was confirmed in $CB_2R^{-/-}$ spinal cord and spleen sections. Using the anti-CB₂R antibody from Cayman, expression of CB₂R was also found in mouse atherosclerotic plaques (Steffens *et al.*, 2005) and in osteoblasts, osteocytes and osteoclasts (Ofeck *et al.*, 2006) of wild-type mice. CB₂R antibody specificity was determined by using spleens and bone from $\text{CB}_2R^{-/-}$ mice. When obtaining data using the currently available polyclonal anti- CB_2R antibodies, one should be cautious. At the moment, there are no CB_2R -specific monoclonal antibodies available. It must therefore be recognized that the fine specificity of such commercial polyclonal antisera may change over time, depending on the bleed and individual animals being immunized during antibody production. Thus, tissues derived from $CB_2R^{-/-}$ mice will continue to provide a very useful tool to elucidate the specificity of current and future anti- CB_2R antibodies. #### Conclusion The reports reviewed here emphasize the usefulness of the $CB_2R^{-/-}$ mouse. Using this mutant mouse, investigators have discovered, or confirmed, CB2R tissue and/or cellular expression under normal or abnormal conditions. Because the CB₂R was originally cloned and reported to be present in immune cells (Munro et al., 1993), it is not surprising that the CB₂R is found in cells of the haematopoietic lineage. The presence of this receptor in preimplantation embryonic stem cells (Paria et al., 1995) is very interesting and may implicate this receptor in the early development of haematopoietic cells and perhaps other cells. We found that in the embryonic rat, CB₂R was expressed in the liver in cells that appeared to be Kuffer cells (Buckley et al., 1998). The CB₂R has also been shown to be expressed in other normal adult cells. These include cells within the CNS (Van Sickle et al., 2005; Gong et al., 2006; Onaivi, 2006; Onaivi et al., 2006) and bone (Ofeck et al., 2006). In other instances, however, CB₂R expression is only evident under certain disease conditions. Thus, CB2R expression is upregulated in pain models (Wotherspoon et al., 2005), atherosclerosis (Steffens et al., 2005), liver disorders (Julien et al., 2005) and during inflammation (Maresz et al., 2007) (Figure 3). On the basis of the findings using the CB₂R^{-/-} mouse, investigators have speculated as to the function of this receptor. CB2R activation is thought to be antinociceptive and anti- **Figure 3** Using the $CB_2R^{-/-}$ mice, the CB_2R has been implicated in
diverse diseases. inflammatory. It is also thought to be involved in bone homeostasis and in protective mechanisms during atherosclerosis and liver injury. On the other hand, using this mutant mouse, investigators have found that the CB₂R is not involved in hypotension. The implication of CB₂R in so many events lends validity to the notion that CB₂R is biologically functionally relevant. Nevertheless, living organisms are complex and one can reason that CB₂R and its endocannabinoid ligands do not work alone and other important molecular players are equally necessary. Finally, the CB₂R^{-/-} mouse has been a very useful tool to help determine drug and antibody specificity and promises to continue to be very useful in drug and antibody discovery. #### Acknowledgements The data presented in the figures and tables were possible through funding by NIH GM53933. #### Conflict of interest The author states no conflict of interest. #### References Alferink J, Specht S, Arends H, Cron M, Poppensieker K, Maier W *et al.* (2007). Resistance to cerebral malaria in $CB_2^{-/-}$ mice. Paper presented at CB_2 Cannabinoid Receptors, Banff, Alberta, Canada. Ashton JC, Friberg D, Darlington CL, Smith PF (2006). Expression of the cannabinoid CB₂ receptor in the rat cerebellum: an immunohistochemical study. *Neurosci Lett* **396**: 113–116. Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Huffman JW et al. (2000). Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404: 84–87. Baker D, Pryce G, Davies WL, Hiley CR (2006). In silico patent searching reveals a new cannabinoid receptor. Trends Pharmacol Sci 27: 1–4. Batkai S, Jarai Z, Wagner JA, Goparaju SK, Varga K, Liu J *et al.* (2001). Endocannabinoids acting at vascular CB₁ receptors mediate the vasodilated state in advanced liver cirrhosis. *Nat Med* 7: 827–832. Batkai S, Osei-Hyiaman D, Pan H, El-Assal O, Rajesh M, Mukhopadhyay P et al. (2007). Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury. FASEB J 21: 1788–1800 Batkai S, Pacher P, Jarai Z, Wagner JA, Kunos G (2004). Cannabinoid antagonist SR-141716 inhibits endotoxic hypotension by a cardiac mechanism not involving CB₁ or CB₂ receptors. *Am J Physiol Heart Circ Physiol* **287**: H595–H600. Benowitz NL, Jones RT (1975). Cardiovascular effects of prolonged delta-9-tetrahydrocannabinol ingestion. *Clin Pharmacol Ther* **18**: 287–297. Bouaboula M, Rinaldi M, Carayon P, Carillon C, Delpech B, Shire D *et al.* (1993). Cannabinoid-receptor expression in human leukocytes. *Eur J Biochem* **214**: 173–180. Boyle WJ, Simonet WS, Lacey DL (2003). Osteoclast differentiation and activation. *Nature* **423**: 337–342. Buckley NE, Hanson S, Harta G, Mezey E (1998). Expression of the CB_1 and CB_2 receptor mRNAs during embryonic development in the rat. *Neuroscience* 82: 1131–1149. Buckley NE, McCoy KL, Mezey E, Bonner T, Zimmer A, Felder CC *et al.* (2000). Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB₂ receptor. *Eur J Pharmacol* **396**: 141–149. - Buranapramest M (2006). The role of the peripheral cannabinoid receptor in modulating $\mathrm{CD4}+\mathrm{T}\text{-cell}$ function. Master's thesis, California State University, Pomona. - Carayon P, Marchand J, Dussossoy D, Derocq JM, Jbilo O, Bord A *et al.* (1998). Modulation and functional involvement of CB₂ peripheral cannabinoid receptors during B-cell differentiation. *Blood* 92: 3605–3615. - Carlisle SJ, Marciano-Cabral A, Staab A, Ludwick C, Cabral GA (2002). Differential expression of the CB₂ cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. *Int Immunopharmacol* 2: 69–82. - Chakrabarti A, Onaivi ES, Chaudhuri G (1995). Cloning and sequencing of a cDNA encoding the mouse brain-type cannabinoid receptor protein. *DNA Seq* 5: 385–388. - Chuchawankul S, Shima M, Buckley NE, Hartman CB, McCoy KL (2004). Role of cannabinoid receptors in inhibiting macrophage costimulatory activity. *Int Immunopharmacol* **4**: 265–278. - Cohen C, Perrault G, Voltz C, Steinberg R, Soubrie P (2002). SR141716, a central cannabinoid (CB₁) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. *Behav Pharmacol* 13: 451–463. - Das SK, Paria BC, Chakraborty L, Dey SK (1995). Cannabinoid ligandreceptor signaling in the mouse uterus. *Proc Natl Acad Sci USA* 92: 4332–4336. - Derocq J-M, Segui M, Marchand J, Le Fur G, Casellas P (1995). Cannabinoids enhance human B-cell growth at low nanomolar concentrations. *FEBS Lett* **369**: 177–182. - Deveaux V, Teixeira-Clerk F, Ichigotani Y, Manin S, Tran Van Nhiew J, Karsak M *et al.* (2007). Role of CB₂ receptors in hepatic wound healing. Paper presented at CB₂ Cannabinoid Receptors: New Vistas, Banff, Alberta, Canada. - Duncan M, Ho W, Buckley NE, Sharkey KA, Pittman QJ (2007). CB₂ receptors may play a role in fever induced by the endotoxin lipopolysaccharide. Paper presented at CB₂ Cannabinoid Receptors: New Vistas, Banff, Alberta, Canada. - Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P *et al.* (1995). Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. *Eur J Biochem* **232**: 54–61. - Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A *et al.* (2006). Cannabinoid CB_2 receptors: immunohistochemical localization in rat brain. *Brain Res* **1071**: 10–23. - Hardwick SJ, Hegyi L, Clare K, Law NS, Carpenter KL, Mitchinson MJ *et al.* (1996). Apoptosis in human monocyte–macrophages exposed to oxidized low density lipoprotein. *J Pathol* **179**: 294–302. - Hargreaves K, Dubner R, Brown R, Flores C, Joris J (1988). A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. *Pain* 32: 77–88. - Helfrich MH (2003). Osteoclast diseases. *Micosc Res Tech* **61**: 514–532. Huang M, Buckley NE, Huang L, Emkey R, Hoffman BJ, Fremeau RT (2007). CB₂ agonists regulate LPS-stimulated cytokine production in mice via a non-CB₂ receptor mechanism. Paper presented at CB₂ Cannabinoid Receptors: New Vistas, Banff, Alberta, Canada. - Ibrahim MM, Deng H, Zvonok K, Cockayne DA, Kwan J, Mata HP et al. (2003). Activation of CB_2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the brain. Proc Natl Acad Sci USA 100: 10529-10533. - Ibrahim MM, Rude ML, Stagg NJ, Mata HP, Lai J, Vanderah TW $et\ al.$ (2006). CB₂ cannabinoid receptor mediation of antinociception. Pain 122: 36–42. - Idris AI, Van't Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA *et al.* (2005). Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. *Nat Med* 11: 774–779. - Jarai Z, Wagner JA, Goparaju SK, Wang L, Razdan RK, Sugiura T *et al.* (2000). Cardiovascular effects of 2-arachidonoyl glycerol in anesthetized mice. *Hypertension* 35: 679–684. - Jarai Z, Wagner JA, Varga K, Lake KD, Compton DR, Martin BR *et al.* (1999). Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB₁ or CB₂ receptors. *Proc Natl Acad Sci USA* **96**: 14136–14141. - Julien B, Grenard P, Teixeira-Clerk F, Tran Van Nhiew J, Li L, Karsak M et al. (2005). Antifibrogenic role of the cannabinoid receptor CB₂ in the liver. Gastroenterology 128: 742–755. - Kaplan BLF, Ouyang Y, Rockwell CE, Rao GK, Kaminski NE (2005). 2-Arachidonoyl-glycerol suppresses interferon-γ production in phorbol ester/ionomycin-activated mouse splenocytes independent of CB₁ or CB₂. *J Leukoc Biol* **77**: 966–974. - Kapsenberg ML (2003). Dendritic-cell control of pathogen-driven T-cell polarization. *Nat Rev Immunol* 3: 984–993. - Karsak M, Gaffal E, Date R, Wang-Eckardt L, Rehnelt J, Petrosino S et al. (2007). Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 316: 1494–1497. - Klein TW, Newton C, Larsen K, Chou J, Perkins I, Lu L et al. (2004). Cannabinoid receptors and T helper cells. J Neuroimmunol 147: 91–94. - Klein TW, Newton C, Larsen K, Lu L, Perkins I, Nong L *et al.* (2003). The cannabinoid system and immune modulation. *J Leukoc Biol* **74**: 486–496. - Klein TW, Newton CA, Nakachi N, Friedman H (2000). Delta-9-tetrahydrocannabinol treatment suppresses immunity and early IFN-gamma, IL-12 and IL-12 receptor beta 2 responses to Legionella pneumophila infection. J Immunol 16: 6461–6466. - Libby P (2002). Inflammation in atherosclerosis. *Nature* **420**: 868–874. - Liu J, Thewke D, Su YR, Linton MF, Fazio S, Sinenski MS (2005). Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. *Arterioscler Thromb Vasc Biol* **25**: 174–179. - Lu T, Newton C, Perkins I, Friedman H, Klein T (2006). Role of cannabinoid receptors in Delta-9-tetrahydrocannabinol suppression of IL-12p40 in mouse bone marrow derived dendritic cells infected with Legionella pneumophila. Eur J Pharmacol 532: 170–177. - Lynn AB, Herkenham M (1994). Localization of cannabinoid receptors and nonsaturable high-density cannabinoid binding sites in peripheral tissues of the rat: implications for receptor-mediated immune modulation by cannabinoids. *J Pharmacol Exp Ther* 268: 1612–1623. - Maccarrone M, Finazzi-Agro A (2003). The endocannabinoid system, anadamide and the regulation of mammalian cell apoptosis. *Cell Death Differ* **10**: 946–955. - Malan TP, Ibrahim MM, Deng H, Liu Q, Mata HP, Vanderah TW (2001). CB₂ cannabinoid receptor-mediated peripheral antinociception. *Pain* **93**: 239–245. - Maresz K, Pryce G, Ponomarev ED, Marsicano G, Croxford L, Shriver LP *et al.* (2007). Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB₁ on neurons and CB₂ on autoreactive T cells. *Nat Med* 13: 492–497. - Massi P, Vaccani A, Parolaro D (2006). Cannabinoids, immune system and cytokine network. *Curr Pharm Des* 12: 3135–3146. -
Matsuda L, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. *Nature* **346**: 561–564. - Milman G, Maor Y, Abu-Lafi S, Horowitz M, Gallily R, Batkai S *et al.* (2006). *N*-arachidonoyl L-serine, an endocannabinoid-like brain constituent with vasodilatory properties. *Proc Natl Acad Sci USA* **103**: 2428–2433. - Munro S, Thomas KL, Abu-Shaar M (1993). Molecular characterization of a peripheral receptor for cannabinoids. *Nature* **365**: 61–65. - Newton CA, Klein TW, Friedman H (1994). Secondary immunity to *Legionella pneumophila* and Th1 activity are suppressed by delta-9-tetrahydrocannabinol injection. *Infect Immun* 62: 4015–4020. - Ofeck O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K *et al.* (2006). Peripheral cannabinod receptor, CB₂, regulates bone mass. *Proc Natl Acad Sci USA* **103**: 696–701. - Onaivi ES (2006). Neuropsychobiological evidence for the functional presence and expression of cannabinoid CB_2 receptors in the brain. *Neuropsychobiology* **54**: 231–246. - Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA *et al.* (2006). Discovery of the presence and functional expression of cannabinoid CB₂ receptors in brain. *Ann NY Acad Sci* **1074**: 514–536 - Ouyang Y, Hwang SG, Han SH, Kaminski NE (1998). Suppression of interleukin-2 by the putative endogenous cannabinoid 2-arachidonyl-glycerol is mediated through down-regulation of the nuclear factor of activated T cells. *Mol Pharmacol* **53**: 676–683. - Palazuelos J, Aguado T, Egia A, Mechoulam R, Guzman M, Galve-Roperh I (2006). Non-psychoactive CB₂ cannabinoid agonist stimulate neuroal progenitor proliferation. *FASEB J* **20**: 2405–2407. - Paria BC, Das SK, Dey SK (1995). The preimplantation mouse embryo is a target for cannabinoid ligand–receptor signaling. *Proc Natl Acad Sci USA* **92**: 9460–9464. - Paria BC, Song H, Wang X, Schmid PC, Krebsbach RJ, Schmid HHO *et al.* (2001). Dysregulated cannabinoid signaling disrupts uterine receptivity for embryo implantation. *J Biol Chem* **276**: 20523–20528. - Petitet F, Donlan M, Michel A (2006). GPR55 as a new cannabinoid receptor: still a long way to prove it. *Chem Biol Drug Des* 67: 252–253. - Pryce G, Baker D (2007). Control of spasticity in a multiple sclerosis model is mediated by CB₁, not CB₂, cannabinoid receptors. *Br J Pharmacol* **150**: 519–525. - Raborn ES, Marciano-Cabral A, Buckley NE, Martin BR, Cabral GA (2007). The cannabinoid delta-9-tetrahydrocannabinol mediates inhibition of macrophage chemotaxis to RANTES/ CCL5: linkage to the CB₂ receptor. *J NeuroImmune Pharmacol* online version available at http://www.springerlink.com/content/ n5n6342814358123/. - Rao GK, Kaminski NE (2006). Cannabinoid-mediated elevation of intracellular calcium: a structure–activity relationship. *J Pharmacol Exp Ther* 317: 820–829. - Reid VC, Mitchinson MJ, Skepper JN (1993). Cytotoxicity of oxidized low-density lipoprotein to mouse peritoneal macrophages: an ultrastructural study. *J Pathol* 171: 321–328. - Rickard DJ, Kassem M, Hefferan TE, Sarkar G, Spelberg TC, Riggs BL (1996). Isolation and characterization of osteoblast precursor cells from human bone marrow. *J Bone Miner Res* 11: 312–324. - Rockwell CE, Snider NT, Thompson JT, Vanden Heuvel JP, Kaminski NE (2006). Interleukin-2 suppression by 2-arachidonyl glycerol is mediated through peroxisome proliferator-activated receptor gamma independently of cannabinoid receptors 1 and 2. *Mol Pharmacol* 70: 101–111. - Ross RA, Coutts AA, McFarlane SM, Anavi-Goffer S, Irving AJ, Pertwee RG et al. (2001). Actions of cannabinoid receptor ligands on rat culture sensory neurons: implications for antinociception. Neuropharmacology 40: 221–232. - Salzet M, Breton C, Bisogno T, Di Marzo V (2000). Comparative biology of the endocannabinod system and possible role in the immune response. *Eur J Pharmacol* **267**: 4917–4927. - Schatz AR, Lee M, Condie RB, Pulaski JT, Kaminski NE (1997). Cannabinoid receptors CB₁ and CB₂: a characterization of expression and adenylate cyclase modulation within the immune system. *Toxicol Appl Pharmacol* **142**: 278–287. - Shire D, Calandra B, Delpech M, Dumont X, Kaghad M, Le Fur G *et al.* (1996a). Structural features of the central cannabinoid CB₁ receptor involved in the binding of the specific CB₁ antagonist SR141716A. *J Biol Chem* **271**: 6941–6946. - Shire D, Calandra B, Rinaldi-Carmona M, Oustric D, Pessegue B, Bonnin-Cabanne O *et al.* (1996b). Molecular cloning, expression and function of the murine CB₂ peripheral cannabinoid receptor. *Biochim Biophys Acta* **1307**: 132–136. - Steffens S, Veillard NR, Aenaud C, Pelli G, Burger F, Staub C *et al.* (2005. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. *Nature* **434**: 782–786. - Sugiura T, Nakajima K, Kishimoto S, Oka S (2007). An endogenous ligand for GPR55, a G-protein-coupled receptor. Paper presented at 17th Annual Symposium on the Cannabinoids, Saint-Sauveur, Quebec, International Cannabinoid Research Society, Burlington, Vermont. - Thewke D, Freeman-Anderson N, Buckley NE (2007). Cannabinoid receptor (CB₂) deficiency inhibits oxidized LDL/Oxysterol- - induced apoptosis in macrophages. Paper presented at Arteriosclerosis Thrombosis and Vascular Biology meeting. - Ueda Y, Miyagawa N, Matsui T, Kaya T, Iwamura H (2005). Involvement of cannabinoid CB_2 receptor-mediated response and efficacy of cannabinoid CB_2 receptor inverse agonist, JTE-907, in cutaneous inflammation in mice. *Eur J Pharmacol* **520**: 164–171. - Ueda Y, Miyagawa N, Wakitani K (2007). Involvement of cannabinoid CB_2 receptors in the IgE-mediated triphasic cutaneous reaction in mice. *Life Sci* 80: 414–419. - Valenzano KJ, Tafesse L, Lee GP, Harrison JE, Boulet JM, Gottshall SL et al. (2005). Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology 48: 658–672. - Valverde O, Karsak M, Zimmer A (2005). Analysis of the endocannabinoid system by using CB₁ cannabinoid receptor knockout mice. *Handb Exp Pharmacol* **168**: 117–145. - Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K *et al.* (2005). Identification and functional characterization of brainstem cannabinoid CB₂ receptors. *Science* **310**: 329–332. - Varga K, Lake K, Martin BR, Kunos G (1995). Novel antagonist implicates the CB₁ cannabinoid receptor in the hypotensive action of anandamide. *Eur J Pharmacol* **278**: 270–283. - Varga K, Wagner JA, Bridgen DT, Kunos G (1998). Platelet and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J 12: 1035–1044. - Wagner JA, Hu K, Bauersachs J, Karcher J, Wiesler M, Goparaju SK et al. (2001). Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J Am Coll Cardiol 38: 2048–2054. - Wagner JA, Varga K, Ellis EF, Rzigalinski BA, Martin BR, Kunos G (1997). Activation of peripheral CB₁ cannabinoid receptors in haemorrhagic shock. *Nature* **390**: 518–521. - Wang H, Guo Y, Wang D, Kingsley PJ, Marnett LJ, Das SK et al. (2004). Aberrant cannabinoid signaling impairs oviductal transport of embryos. Nat Med 10: 1074–1080. - Wang H, Huirong X, Dey SK (2006). Endocannabinoid signaling directs periimplantation events. AAPS J 8: E425–E432. - Whiteside GT, Gottshall SL, Boulet JM, Chaffer SM, Harrison JE, Pearson MS *et al.* (2005). A role for cannabinoid receptors, but not endogenous opioids, in the antinociceptive activity of the CB₂-selective agonist, GW405833. *Eur J Pharmacol* **528**: 65–72. - Whiteside GT, Lee GP, Valenzano KJ (2007). The role of the cannabinoid CB₂ receptor in pain transmission and therapeutic potential of small molecule CB₂ receptor agonists. *Curr Med Chem* **14**: 917–936. - Wotherspoon G, Fox A, McIntyre P, Colley S, Bevan S, Winter J (2005). Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. *Neuroscience* **135**: 235–245. - Xing L, Schwarz EM, Boyce BF (2005). Osteoclast precursors, RANKL/RANK, and immunology. *Immunol Rev* **208**: 19–29. - Yang Z, Paria B, Dey S (1996). Activation of brain-type cannabinoid receptors interferes with preimplantation mouse embryo development. *Biol Reprod* 55: 756–761. - Zhu W, Friedman H, Klein TW (1998). Delta-9-tetrahydrocannabinol induces apoptosis in macrophages and lymphocytes: involvement of Bcl-2 and caspase-1. *J Pharmacol Exp Ther* **286**: 1103–1109. - Ziring D, Wei B, Velazquez P, Schrage M, Buckley NE, Braun J (2006). Formation of B and T cell subsets require the cannabinoid receptor CB₂. *Immunogenetics* **58**: 714–725.